Biopsy sample Clinical Task Training size DL model: Patch Feature Extractor DL model: Patch Feature Aggregator Testing dataset Testing results References
LN Differentiate DLBCL, BL, SLL, and benign 128 CNN on manually cropped area None Internal Accuracy 95% Achi et al., 2019[@364852]
LN Differentiate DLBCL from various benign and malignant LN samples 1,754 Majority-voting of 17 CNNs on manually cropped area None External Accuracy >99% Li et al., 2020[@364853]
LN Differentiate DLBCL, FL, and benign 388 CNN on manually cropped area None Internal Accuracy 90%
AUC 0.95
Miyoshi et al., 2020[@364854]
LN Differentiate DLBCL, SLL, and benign 629 CNN on manually cropped area None External Accuracy 96% Steinbuss et al., 2021[@364855]
LN and other biopsy sites Predict MYC rearrangement on H&E stained DLBCL WSIs 287 CNN Not clearly specified External Accuracy 74%
AUC 0.83
Swiderska-Chadaj et al., 2021[@364856]
LN Differentiate FL and benign hyperplasia 378 CNN Mean pooling External AUC 0.66 Syrykh et al., 2020[@364857]
Skin Annotate CD30+ regions on CD30-stained WSIs to diagnose CD30+ LPD 28 CNN Local self-attention, sum pooling Internal Accuracy 96%
AUC 0.99
Zheng et al., 2023[@364858]
BM Predict mutations on H&E stained MDS WSIs 236 Pretrained CNN Mean pooling Internal AUC varies on mutations, as high as 0.94 Bruck et al., 2021[@364859]
BM Differentiate AML, CML, ALL, CLL, and MM 129 Pretrained CNN Attention External Accuracy 94%
AUC 0.97
Wang et al., 2022[@364860]
BM Differentiate ET and prePMF 226 Pretrained CNN Attention Internal Accuracy 92%
AUC 0.90
Srisuwananukorn et al., 2023[@364861]
BM Differentiate AL, MM, LPD, and normal 556 Pretrained YOLO for cell detection and feature extraction Attention Internal Average F1 score 0.57 Mu et al, 2023[@364862]